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A linear differential game of evasion is considered. The possibility of avoiding an encounter is proved when the condition of 

“rotatability” and the condition for the inclusion of the domain of values of the controls of the pursuer into the domain of values 

of the controls of the evader are satisfied. 0 2002 Elsevier Science Ltd. All rights reserved. 

The formulation of the problem being considered is due to Pontryagin [l, 21 and many investigations 
have been concerned with it (see [3-lo]). Pontryagin’s theorem requires that two conditions are satisfied: 
the conditions of “rotatability” and “advantage”. A number p > 1, which reflects the advantage of the 
evading object over the pursuing object, participates in the formulation of the second condition. In 1973, 
Pontryagin formulated the problem: is it possible to prove the theorem of evasion [2] if ~1 = l? However, 
a positive solution of the problem has still not been obtained. 

A solution of Pontryagin’s problem is given below in the case when the domain of control of the 
pursuer is contained in the domain of control of the evader. 

1. STATEMENT OF THE PROBLEM AND 

FORMULATION OF THE RESULTS 

A control vector z is considered, the motion of which is described by the linear differential equation 

i=Cz-u+v+a; ZER”, UEP, u EQ (1.1) 

C is a linear mapping of R” onto itself, a is a specified constant vector from R”, u is the control parameter 
of the pursuer, u is the control parameter of the evader, and P and Q are specified convex, non-empty 
compact subsets of the space R”. The game is considered to be completed if z reaches a specified linear 
subspace M of the space R”. The aim of the evader is to prevent the termination of the game, and to 
achieve that a value u(t) of the parameter u can be chosen at each instant of time t 2 0 while 
simultaneously using the values z(t) and u(t) of the vectors z and u at the same instant of time t. 

If, for any value z(0) E M, the game can be conducted in such a way that the point z(t), t > 0 never 
reaches the set M, we shall say that evasion is possible in game (1.1). 

We will denote the orthogonal complement of the subspace M in the space R” by L. Suppose W is, 
for the present, an arbitrary vector subspace of the space L. We will denote the operation of orthogonal 
projection from R” onto W by n. Suppose A and B are two subsets of the space W. We shall 
write A e B if a vector x E W exists such that x + A C B. 

We shall say that the condition of rotatability is satisfied if a two-dimensional subspace Wof the space 
L exists such that a fixed one-dimensional vector space WI, for which the inclusion 

nefCQ c W, (1.2) 

holds for all sufficiently small positive t, does not exist in W. 
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A parallel translation of any of the set P and Q in the space R” can be compensated by a change in 
the vector a. Making use of this, we can assume that 0 E P, 0 E Q and that, instead of (1.2) the usual 
inclusion 

holds. 

nercQ c W, 

Theorem. Evasion is possible in game (1.1) when the rotatability condition is satisfied and P C Q. 

2. AUXILIARY ASSERTIONS 

We define the sets 

M ,+, =(eEM,:Cz+aEM,), 1=1,2 ,..., n-l (2-l) 

where Mi is the orthogonal complement of U’in R”. It is obvious that M C Ml, MI+, C M/(1 = 1,2, . . . , 
n-1). It can be proved that: 1) if Ml+, = Ml for a certain I = 1,2, . . . , n-l, then Ml = Ml+1 = . . . = M,,; 
2)ifMI+,#MIforallI= 1,2,..., n-l, then n-2 = dim Ml > dim M2 > . . . > dim M,,_, = 0 and M,, = 
0. Hence, it follows that, if M,, f 0, then M,_, = M,,_2. This means that a natural number k, 
ksn-2,existssuchthateitherMk#Mk+i =00rM,#M2#...#Mk=Mk+, =... =M,#0. 

Suppose dim Mi = ki, Ai is a certain linear, one-to-one mapping of the space Rki onto Mi, that is 

Henceforth, i = 1, 2, . . . , k. 

AiRk’ = Mi, Ni = Mi \ IV,.+, (2.2) 

According to Cauchy’s formula for the solution of Cauchy’s problem 

CL = cw + a, w(0) = wa 

we have 

(2.3) 

Using the set Ni and relation (2.3), we define the surface Ci, the equation of which in parametric 
form is 

~i:w=w(z,wO), TE(--oo;O), woeNi 

or 

&:w = W(S Aix), z E (--;O), x E Rki \ A;‘Mi+, (2.4) 

Note that the set of points w = ~(7, wo), 7 E ( -00; 0), w. E Nk can turn out to be a point. In all cases, 
we call it a surface. 

We will denote by n(z) a vector from Wsuch that 

(n(z), Cz + a) = 0, ZE R” 

((x, y) is the scalar product of the vectors x and y). 

Lemma 1. The surface Ci is smooth. If w(z, wo) E Xi, then the vector 

(2.5) 

m(T, wo) = (e-zC)Tn(wo) 

is normal to the surface Xi at the point w(z, wo) (T is the sign of transposition). 

Proof. Suppose ~0 = A,Q, ~0 E Rki \Ay’Mi+l. 
We calculate (see (2.1)-(2.3) (everywhere henceforth 3, = a/&, aj = a/ax,, j = 1,2, . . . , k) 

(2.6) 
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a~W(r.Aix)I,=,,=e~C(CAixo+~)=e*C(CWo+~) 

aiW(T,Aix) I,=, =e~CAiei (2.7) 

Here, (xi, x2, . . . , .Q.)~ = x E Rk’ and el, e2, . . . , ek. are unit coordinate vectors in Rkl. It is obvious that the vectors 
&it&z, . . . , Aiek! form a basis in the space M;. Hence, taking account of the definition of the sets Mi, Ni, the 
surface xci and the tact that det (eC) # 0, we conclude that the vectors 

J,W(r*Aix) Ix=_q 3 JjW(~vAiX)l,=q, 

are linearly independent. This means that the surface C, is smooth. 
The proof of the second part of the lemma follows from relations (2.5)-(2.7) according to which we have 

(arw(CAix) 1x=x0 9 m(T,wg))=(eTC(Cwo +a). (e-SC)Tn(wO))=O (2.8) 

(ai w(t Aix) II==0 9 m(T,wo))= (e”Aiej, (cz-‘~)~B(wo)) = 0 

Suppose no is an arbitrary, non-zero vector from W. The vector (e “‘)rna is then normal to the surface 

Lj3+...., & at the point w(z, wo), w. E ZVi (see (2.1), (2.4), (2.5) and (2.6)). This means that the vector 
no 1s normal to the surface X0 = I& u & u . . . u I$ at the point w(r, wo), w. E M2. Note that 

the equation of the surface E. can be written in the form 

~o:w=w(‘.wo), rE(--oo;O), WoEA+ 

For a fixed (ro, wo) E ( -; 0), wa E M2, we determine the function u(u), u E P from the equality 

~~~I~~~~o,~o~r-~+~~I=I~~~ro,~o~.-~+~~~~~I, U(U)E P (2.9) 

so that, in the case of an arbitrary measurable function u(t), a G t G b, u(t) E P, the function u(u(t)), 
a G t G b will be measurable, 

Lemma 2. Suppose 

zo = 14~0, WO) E C, (m(To, WO>, Q> = (01 (2.10) 

where E = & or E = co. Then, for any measurable function u(.): [O; to] + P(t, > 0), the solution 
z(t, zo, U(S)) of the equation 

i=Cz-u+v(u)+a, z(O)=% 

will “descend” from the surface E,, that is, an instant of time rl E (0; t2) exists such that z(tI, zo, u(a)) C E. 

Proof. We will assume that a measurable function us(.): [O; to] -+ P exists such that 

Z(I,z().UO(~))E c. 0 c f s to (2.11) 

By virtue of the continuity of the vector-function m(r, w), - C r < m, w E Ml, the existence of a number E > 
0 such that 

~~:!I(m(~,w),-u+U(u))I>O when Ir-roIc&, Iw-woI<& 

follows from relations (2.9)-(2.11). 
Next, it follows from inclusion (2.10) that 

Z(t,~.~O(.))E(w(‘5,w,): II-lo I<&, wt EWu(E)l, osrsrz 

(2.12) 

wa(~)=(w~Mt \M2: lw-wOlce) when C=Ct 

wo@)=(w~M2: (w-wOl<el when C=Co 

(2.13) 

where t2 is a fairly small positive number. 
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We will denote the normal to the surface C at the point z = z(t, zO, uO(.)) E x by h = h(z(t, zO, uO(.))). Then (see 
(2.13)) 

h E (m(T,w) :( T-To I< E, w E we(E)], 0 G r G r2 (2.14) 

The equality 

(Cz+a,h)=O, OGfGf 2 

follows from relations (2.8) and (2.11). Hence, we have that 

(i,h)=(Cz-ug(f)+v(u0(l))+a.h)= 

= (+0(r) +u (u&&h) = 0 

almost everywhere in [O; t*]. The last equality contradicts inequality (2.12) (see the inclusion (2.14)). 

3. PROOF OF THE THEOREM 

Suppose that, at the instant of time t = 0, an object z is located at the point zo, that is, z(0) = zo. We 
put I: = Co u Xi (see Lemma 2). There are two possible cases. 

A. If the solution z(t, zo), c 2 0 of the equation 

i=Cz+a, z(O)=z& (3.1) 

never reaches the set M, we put LJ = u(u) = U. It is then obvious that the object z never reaches the 
set M. 

B. Suppose the solution z(t, za), t > 0 of Eq. (3.1) reaches the set M at a certain instant of time 
I = to, co > 0 (it can be assumed that z(t, zo) E M, 0 c t G to without any loss of generality). We put 
z(to, zo) = wo. It is then obvious that w. E M and that the trajectories z(t, zo), 0 c t c to and w(z, wo), 
-t c z c 0 are identical: z(t, zo) = w(&fo, wo), where ~(2, wo) is the solution of the equation 

W(7) = G(z) +a, w(0) = wa 

We assume that 

Then (see (2.6)) 

lo)= (~(‘~~~g).Q)=((e-~~)~n(~~),Q)=(n(w~), e -fcQ) = (n(wo), ?cemTcQ), - to s T < 0 

Hence, on taking account of the inclusion n(wo) E W, we conclude that the sets lie in the one- 
dimensional subspace Wi E Wfor all r E [-to, 01, which contradicts the rotatability condition. This means 
that a number ~0, z. E [-to, 0] exists such that (m(ro, wo), Q) f (0). We put v(t) = u(t) in the time interval 
[O; to + zo]. Then 

t(t) = w(t -to* we) E M, 0 d t G to + r. 

Hence, without any loss of generality, we assume that 20 = 40, that is 

M-~o, wo )q Q> = Mzo, wo )$ Q> f WI 

We now put zo(a) = {z E R”: Iz-z. 1 c (T) and choose the number o so that 
1) zo(o) n M = 0,2) zo(o) n X0 = 0 if z. E Ci. 
It can be shown that it is possible to choose such a cr. Next, we determine the function u = uo(u), 

u E P from equality (2.9). 
We fix the positive number E such that, for an arbitrary measurable function u(t), 0 c t G E, 

u(t) E P, the inclusion z E zo(o), 0 G t d E is satisfied, where z = z(t, zo, u(.), uo(u(+))) is the solution of 
the equation 

i = cz - u(r) + &.4(f)) + a, z(0) = zc 
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It is obvious that the number &o exists. 
Suppose the pursuer chooses an arbitrary control u = u(t), t 2 0. We assume that 

v(t) =v,(u(t)), t 2 0 

Then, by virtue of Lemma 2, a number tl, 0 < t, < E exists such that 

ifzo E C,, m = 0, 1. Moreover, if z. E Z1, then, by virtue of the choice of the numbers CF and E, we 
have 

20, rZO,U(.)* ~o(U(-))) F c(pc, = c 

This means that, if z. E x0, then, in a sufficiently small time interval, we can get that z(tl) E x0. If, at 
the same time, it is found that z(tl) E Z1, then, in a similar manner, we get that 

Here, z(t) E M for all t E [O; to]. 
When t 2 t2, we put u = U(U) = u and the point z, by moving in accordance with relation (2.3), does 

not fall in the set M. 
The theorem is proved. 

4. EXAMPLE 

In game (l.l), n 2 2 and the sets P, Q and M have the form 

P=(x=(x,,x~ ,..., x,&R”: jx;IWJ;;, i=1,2 ,..., n) 

Q=(x=(x,,x* ,..., x,&R”: xf+x;+...+x,2sl) 

M=(x=(x,,x~ ,..., x,&R”: x3=x4=...=xn=O) 

(M = (0) when n = 2). It is then obvious that the set eKQ is a body in R" and that mTcQ contains an interior 
point as a two-dimensional body, that is, the condition of rotatability is satisfied. Moreover, P C Q and p = 1. At 
the same time, Pontryagin’s conditions and those in [2-lo] are not satisfied. 
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